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A FAST RIEMANN SOLVER WITH CONSTANT 
COVOLUME APPLIED TO THE RANDOM CHOICE 

METHOD 

E. F. T O R 0  
Department of Aerodynamics, Cranjeld Institute of Technology, Cranjeld, Bedfordshire MK43 OAL, U.K. 

SUMMARY 
The Riemann problem for the unsteady one-dimensional Euler equations together with the constant- 
covolume equation of state is solved exactly. The solution is then applied to the random choice method to 
solve the general initial-boundary value problem for the Euler equations. The iterative procedure to find p*, 
the pressure between the acoustic waves, involves a single algebraic (non-linear) equation, all other quantities 
follow directly throughout the x-t plane, except within rarefaction fans where an extra iterative procedure is 
required. The solution is validated against existing exact results both directly and in conjunction with the 
random choice method. 
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1.  INTRODUCTION 

The ideal-gas kinetic theory assumes that molecules occupy a negligible volume and that they do 
not exert forces on one another. In applications such as in combustion processes, these 
assumptions are no longer accurate descriptions of the problem. In this paper we incorporate 
covolume; that is to say, we assume that molecules occupy a finite volume b so that the volume 
available for molecular motion is u - b. The resulting thermal equation of state is 

~ ( u - b ) =  RT. (1) 
Here p ,  u, R and Tare the pressure, the volume, the gas constant and the absolute temperature 
respectively, with u =  l/p; p is the density. 

If one were to assume intermolecular forces as well, then'the Van der Waals' equation of state 
would result. However, we are only interested in equation (1) where b is constant (with dimensions 
m3 kg-I). Corner' reports on experimental results for a good range of solid propellants and 
observed that the covolume b varied very little, i.e. 0.9 x < b < 1.1 x lop3 m3 kg-'. The best 
values of b lead to errors no greater than 2% and thus we feel there is some justification in using 
equation (1) with b = constant when modelling gas dynamical events associated with solid 
propellant burning. 

The main motivation.of the present work is to extend the applicability of the random choice 
method (RCM) to model gas dynamical events arising from, and coupled with, combustion 
phenomena. Since the RCM uses the exact solution of the Riemann problem, our first task will be 
to devise an efficient Riemann solver. In Reference 2 we derived a number of covolume relations 
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and indicated a solution strategy based on the Newton-Raphson method applied to a 3 x 3 system 
of algebraic equations. For rarefaction fans we also suggested a similar approach to solve another 
3 x 3 system. The resulting Riemann solver was found to be more efficient than that based on the 
Godunov iteration when applied to the special case b =O (ideal gas), but the net gains were limited. 

The present Riemann solver is much more efficient; it is an extension of that proposed in 
Reference 3 for ideal gases. The two iteration procedures that are present (one for the pressure p* 
between the acoustic waves and the other for the density p inside rarefaction fans) involve a single 
algebraic equation. The Newton-Raphson method works well in both cases. 

The implementation of the RCM using the exact Riemann solver is carried out on a non- 
staggered grid, whereby the solution to the next time level is advanced in a single step. This 
programming strategy has a number of advantages over the more common staggered grid 
approach. Simplicity is one of them. Use of irregular/adaptive grids is another. The original idea 
appears to be due to C01ella.~ 

The remaining part of this paper is organized as follows. Section 2 defines the Riemann problem 
and delineates the solution strategy. In Section 3 we collect the covolume relations required to 
solve the problem. In Section 4 we solve the Riemann problem. In Section 5 we describe the 
implementation of the RCM. In Section 6 we apply the solution directly and in conjunction with 
the R’CM. Results are compared with existing exact solutions. Finally, in Section 7 we draw some 
conclusions and indicate areas of application of the present results. 

2. THE RIEMANN PROBLEM 

We consider the Riemann problem for the unsteady one-dimensional Euler equations together 
with the covolume equation of state (1) with constant b, namely 

U, + F(U), = 0, (2) 

where - co < x < co and t > to. Here U = U(x, t )  with x and t denoting space and time respectively. 
In equation (2) the subscripts denote partial differentiation as usual. U and F(U) are vectors of 
conserved variables and fluxes respectively. These are given by 

where u is the velocity, e is the specific internal energy and E is the total energy given b y  

E =$pu2 + pe.  ( 5 )  
The initial condition (3) consists of two constant states U, and U,. 

Note that equation (1) serves as a closure condition for system (2), which has three differential 
equations and four unknowns. A corresponding caloric equation of state gives an expression for 
the specific internal energy in equation (5 )  in terms of the unknowns of system (2). 

The solution of the Riemann problem (1H5) for t > to can be represented in the half x-t plane as 
in Figure 1. 

There are three waves present: W,, W,  and W,. The middle wave W, is always a contact 
discontinuity, the left wave W, is either a shock or a rarefaction and the right wave WR is either a 
shock or a rarefaction. Hence there are four possible wave patterns. The region star between waves 
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Figure 1. Solution of the Riemann problem with data U, (left) and U, (right) for the unsteady one-dimensional Euler 
equations 

W, and W, is characterized by having pressure p* =constant and velocity u* =constant with 
p = p t  between W, and W, (star left) and p = p: between W, and W, (star right). In the portion of 
the half x-t plane to the left of wave W, the solution is equal to the constant state U, (data). 
Similarly U = U, in the region to the right of wave W,. The solution U at a time t > to inside a 
rarefaction fan (WL or W,) varies smoothly with x.  

The principal step of the solution procedure is the determination of the solution in the region 
star. We call this the star step. A feature of the present Riemann solver is that the star step consists 
of a single (non-linear) algebraic equation for the pressure p*.  Other quantities in the region star 
follow directly. Clearly, the solution for p* must be found iteratively, since the type of waves WL 
and W, is not known a priori. This must be determined as part of the solution. 

The star step requires equations connecting U,(data) to U,* and U,(data) to U:. In each 
situation one must derive equations for the case in which the connecting wave is a shock or a 
rarefaction. These equations are manipulated in such a way that the velocities u,* and uz are 
expressed as 

u:: 'fL(P*? UL)? uR* 'fR(p*, uR). (6) 

But u t  = ug gives a single algebraic non-linear equation for the unknown p*, i.e. 

A certain amount of work is involved in determining the form of the functionsf, andf, in 
equations (6) and thus f i n  equation (7). 

Once p* is known from equation (7), all other quantities in regfon star follow directly from 
explicit relations. If both waves W, and W, are shocks, then the solution of the Riemann problem 
has been determined everywhere in the half x-t plane. However, if a rarefaction fan is present, the 
solution inside it requires another iterative procedure. This is unlike the ideal-gas case, where the 
solution inside a rarefaction fan follows directly from the star step (also iterative). We present an 
economical way of finding the solution inside rarefaction fans. Instead of solving a 3 x 3 non-linear 
system (as suggested in Reference 2), we solve a single non-linear equation for the density p. Other 
quantities follow directly. 

Next we collect some basic relations for shock and rarefaction waves and derive covolume 
expressions for the internal energy and the sound speed. These will be utilized later in the star step. 
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3. COVOLUME RELATIONS 

Here we collect some of the covolume equations derived in Reference 2. There we showed that the 
specific internal energy e is given by 

and the sound speed c is given by 

Here y denotes the ratio of specific heats as usual. The derivation of equations across shocks and 
rarefactions is now dealt with separately. 

3. I .  Shock relations 

Consider the case of a right-travelling shock wave of speed S,. In the steady frame of reference 
attached to the shock the usual equations for mass momentum and energy apply. In Reference 2 
we formulated the solution of the star step in terms of the pressure p* and two parameters M L  and 
M , .  In the present paper the solution strategy is different, but expressions for ML and M ,  are still 
useful. For a right-moving wave (shock or rarefaction) M ,  is defined as 

For a right-travelling shock the steady shock relations give 

where D ,  = p g / p R  is the density ratio across the shock wave. Also, the standard Hugoniot relation 
can be written as 

where H ,  = p * / p R  is the pressure ratio across the shock. Substitution of e from equation (8) into 
equation (12) gives a relationship between H ,  and D ,  across the shock, i.e. 

which, if used in equation ( 1  I), leads to 

.R=[ (TG)( ~ + l  P R P R  H R + s ) ] " 2 .  

Similarly, for the left-travelling wave W ,  a parameter ML can be defined as 

M P* - P' 
L -  u*-uUL' 
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which, after using appropriate relations, becomes 

~ + l  PLPL 
ML’[ ( 2 1 -bpL)( HL+5)] ”” 
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(16) 

Here HL=p*/pL is the pressure ratio across the left-rnoving shock. 

3.2. Rarefaction relations 

In order to obtain expressions for ML and MR in the case in which waves WL and W ,  are 
rarefaction waves, we need the generalized Riemann invariants and the isentropic relations. For a 
left rarefaction 

J ,  = u + - (1 - bp) =constant (17) 
2c 

Y - 1  
and 

p L  HL/Y. (18) Pt* - -- -~ 
1-bp;fl 1-bpL 

2c 
Y - 1  

For a right rarefaction we have 

(19) 

- HA/Y. (20) 

J ,  = u - - (1 - bp) = constant 

and 
PR* - - 

1-b& 1-bpR 

Use of equations (1 7) and (1 8) gives 

(21) 
’/’ 1 -HL 

M L = T  ’- ( y(rLFpL)) 1 -H(,-l)/ZY 

and use of equations (19) and (20) gives 

We now return to equation (6). Note that for a left wave, from definition (15) for M ,  we have 

P L  - P* u* =uL +-- 
ML 

jL= IT 2(1-1-- ’- 

Similarly, for a right wave definition (10) gives 

u* = UR -j*,b*, URh 
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j R =  1 2(1-1 

We have now completely determined the problem for the star step. From equations (23) and (25) 
the single equation (7) for p* results, where fL = uL +A and fR = uR -L; A and A are given by 
equations (24) and (26) respectively. 

4. ALGORITHM FOR THE SOLUTION OF THE RIEMANN PROBLEM 

Here we use all the relations developed in Section 3 to implement an efficient algorithm for 
completely solving the Riemann problem with constant covolume in the half x-t plane. 

As pointed out in Section 2, the solution procedure consists basically of the star step and the 
rarefaction fan step. The principal part of the star step is the solution of an equation for the 
pressure p* in region star. The rarefaction fan step consists of finding the complete solution inside 
a rarefaction fan; its principal step is the solution of a single equation for the density p. Both steps 
contain an iteration. We shall deal with each of them separately. 

4.1. The star step 

equation 

wherefZ and& are given by equations (24) and (26) respectively. We do this by a Newton-Raphson 
iteration procedure of the form 

where 

The main part here is the determination of p* by solving the single non-linear algebraic 

f(p*, uL, uR) =X.(P*, uL) +id,*, uR) + uL - u R  = 0, (27) 

p:) = p:k- 1) + 1) 3 

6(k )  = -f(p:k), uL, uRh!fik). 

Here k denotes the iteration and 6 , )  is an increment at  the kth iteration. 
The method requires the evaluation of derivatives 

at the known point p* = p:) and an initial (guess) value p t  . An economical guess value would be 
p g  =&pL + pR), but it could be inaccurate which can increase the number of iterations 
for convergence. We say that the iteration procedure has converged to the solution at iteration 
k=K if 

where TOL is a chosen tolerance; e.g. TOL = is found to give sufficiently accurate solutions. 



FAST RIEMANN SOLVER 1151 

An accurate (although expensive) guess value pg can be found if we assume that both acoustic 
waves W, and W, are rarefaction waves; that is, in evaluatingx and& in equation (27) for p*, 
equations (24b) and (26b) apply. Algebraic manipulations give a closed-form solution for p g  as 

Clearly, if both W, and W, are rarefaction waves, then equation (30) gives the exact solution for 
p*. But even if the assumption leading to equation (30) is not true, the estimate p: is quite accurate3 
even for cases involving shocks of strength of about three. The reason for this is that the 
rarefaction and shock branches of the p-u curve’ have first and second continuous derivatives at 
their intersection point. Thus a continuation of, say, a shock branch via the rarefaction branch is a 
good approximation for data states U, and U, that are sufficiently close in a given sense. 

If the solution of the Riemann problem is used in a local sense, as applied to the random choice 
method, then there may well be one or two genuine discontinuities (shocks or contacts) in the flow 
field at a given time. Thus typically 98% of the local Riemann problems have data with close states 
and thus p ;  as given by equation (30) is very accurate. A single iteration is performed in most, if not 
all, of these cases. 

Once p* has been found, u* follows directly from either of equations (23) or (25). In practice, it is 
advisable to take a mean value. The determination of p z  and pz (Figure 1) depends now on the 
type of waves W, and W,. For instance, if W ,  is a shock wave, then p i  follows directly from 
equation (13); if W, is a shock wave, we use the counterpart of equation (13) to find pf .  l f  W, is a 
rarefaction, then equation (18) gives p;; if W, is a rarefaction, equation (20) gives pg. Thus the 
complete solution of the Riemann problem in the region star has been obtained. 

A simple but important Riemann problem is that arising at boundaries. The solution has closed 
form and is given in the next section. 

4.2. The Riemann problem at  a moving boundary 

If reflections are to be allowed, then the following boundary conditions apply: 
Consider the right boundary and assume this is given by a piston moving with known speed V,. 

pR=PL, u R =  -uL+2Vp, PR=PL. (31) 

Here the subscript L denotes the last grid point inside the computational domain and the 
subscript R denotes the fictitious grid point immediately to the right of the piston. 

The Riemann problem with data (31) has the solution depicted in Figure 1 with u* = V,  and W ,  
and W, both of the same type, i.e. both rarefactions or both shocks. 

Now we find the pressure p* explicitly. It is easy to see that the functionsf, andf, in equation 
(27) are identical and that fz + uL - Vp =O. 

If Vp>uL, then both W ,  and W ,  are rarefaction waves and the solution for p* is 

If V,<u,, then both W, and W, are shock waves with 
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For the left boundary the analysis is identical and the result is 

if Vp < uR (two rarefactions) and 

2aR + (vp-uR)2 +(vp/,-uR)J[4crRf1 +fl)+(vp-uR)21 P* = P R  
2aR 

if VP>uR (two shocks), where aR is given by equation (34) with pL, pL replaced by pR, pR. 
The problem that remains is the determination of the solution inside rarefaction fans. 

4.3. Solution inside rarefaction fans 

We consider only one case in detail. Suppose the left-travelling wave WL is a rarefaction wave as 
illustrated in Figure 2. Consider a general point Q(R, f )  inside the rarefaction fan bounded by 
characteristics dx/dt = uL - cL (head) and dxldt = u* - c: (tail). A characteristic ray through the 
origin and Q has slope dxldt =u-c  in the x-t plane, where both u and c are unknowns of the 
problem. Then 

u = a/;+ c. (37) 
Use of the left Riemann invariant JL given by equation (17) and of equation (37) gives 

Now using definition (9) of sound speed and isentropic relation (18), with p t  replaced by p, at point 
Q we obtain 

- d x = u - c  
d t  :; = "*- c* 
- 

X 
x = x  X 

Figure 2. The sampling point Q(9,A lies inside a left rarefaction wave. The head and tail of the wave are given by 
dx/dt = uL - c, and dxldt = u8 - c t  respectively 
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Further algebraic manipulations give 

and 

where the constant BL is given by 

Equation (40) is a non-linear algebraic equation for p. We solve this using a combination of the 
Newton-Raphson and the secant methods. Once p is found to a given accuracy, the pressure p 
follows immediately from equation (39). The sound speed c is now known from equation (9) and 
the velocity u follows directly from equation (37). 

For the case of a right rarefaction the analysis is entirely analogous. The equation for p inside 
the fan is 

FR = p Y - l ( y  + 1 -2bp)2 - P R (  1 - bp)" ' = 0, (43) 
where 

Then p follows from an equation like equation (39) with pL, pL replaced by pR, pR. The sound 
speed c follows from the definition (9) and u is given by 

u=a/t*-c. (45) 
The exact solution of the Riemann problem with constant volume is now known everywhere in 

the half x-t plane (Figure 1). 

5. THE RANDOM CHOICE METHOD (RCM) WITH COVOLUME 

In this section we describe the way the exact solution of the Riemann problem can be used locally 
to obtain (numerically) the global solution of the general initial-boundary value problem for the 
Euler equations. 

Consider the system of equations (2) in a finite domain 0 <x  < L subject to general initial data at 
a time t,, say. If the spatial domain is discretised into M cells of size Ax and the general data are 
approximated by piecewise-constant functions, then the original problem has been replaced by a 
sequence of local Riemann problems, RP(i, i+  1) for i =  1, . . . , M - 1.  In addition, there are two 
more boundary Riemann problems, RP(0, 1) and RP(M, M + 1). Data for RP(i, i+  1) consist of 
two constant states U ;  (left) and U:, (right). The discrete problem is illustrated in Figure 3. Each 
local Riemann problem has solution as depicted in Figure 1 and can be solved exactly by the 
method of Section 4. Now the solution is valid locally for a restricted range of space and time, i.e. 
before wave interaction occurs. For a sufficiently small time increment A T  the local solutions are 
unique in their respective domains so that the global solution at time tn+ l  = t,+AT is uniquely 
defined for O <  x < L. Within cell i (Figure 3) the solution is composed of the exact solutions of 
RP(i- 1, i )  and RP(i, i+  1). We denote this exact solution by V;+'. Note that V!+' (x,  t,, 1) 

depends on X ( X ~ < X < X ~ + ~ ) ;  it is not constant in general. In fact, there may be strong 
discontinuities transversing cell i. In order to advance the numerical solution in time, a procedure 
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Sampl i ng r interval 1 

1 X .  i *1 'i 1+1 i - 1  

Figure 3. Solution oflocal Riemann problems RP(i- I .  i)and RP(i. i +  1)determining thesolution U;'' in cell iat thenew 
time level n i -  1. Sampling is performed in the interval [xi. x i +  ,] of length Ax at time level n + I 

to update U; to U;" is required. The random choice method4s6 takes 

UY' = v;+ '(Qi) (46) 

where Q i = ( X i +  O,Ax, r , +  A g  is a point at a 'random' position within cell i .  Here 0, is a pseudo- 
random number in the interval [0, 13. 

We remark that a better known version of the RCM advances the solution in two steps using a 
staggered grid.6 The one-step RCM on a non-staggered grid as presented here is simpler to 
implement and has a number of advantages over the staggered grid version. This is most evident 
when source terms depending on x and t are incorporated; also, when using higher-order 
versions,' hybrid schemes* or irregular grids," the one-step RCM facilitates coding enormously. 

Two more aspects of the method require attention, namely the choice of the time step size AT 
and the generation of the pseudo-random numbers 6,. The choice of AT is dictated by the 
requirement that no waves should interact. This is the CFL condition. A popular version for the 
RCM is 

where the coefficient C ,  is chosen within the interval (0, $1 and S,,, is the maximum wave speed 
present at time t , ,  i.e. 

A T =  C,  Ax/Smax, (47) 

S,,,=max(lu;l +c;). (48) 

The CFL condition (47) chooses AT in such a way that no wave is allowed to transverse more 
than half a cell size. This is convenient to implement, but one could do better by monitoring 
intersection points within each cell and then choosing AT appropriately. 

Concerning the sequence {On}, it has been established4 that Van der Corput sequences give the 
best results. Truly random numbers are not as adequate. A general Van der Corput sequencelo 
{On} depends on two parimeters k ,  and kZ, with k ,  > k 2  >O, both integer and relatively prime. 
Then the ( k l ,  k 2 )  Van der Corput sequence (0,) is formally defined as 

m 

i = O  
en= 1 ~ ~ k ; ( i ' l ) ,  (49) 

Ai=kza i  (mod k , ) ,  (50) 

n =  aiki. (51) 

where 

m 

i = O  
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Equation (49) says that the nth member O , g [ O ,  I ]  of the ( k l ,  k , )  Van der Corput sequence is a 
summation of rn terms involving powers of k ,. The coefficients Ai are defined by equations (50) and 
(51). First, the non-negative integer n is expressed in the scale of notation with radix k ,  (base k , )  by 
equation (51), e.g. k ,  = 2 ,  k , =  1 gives the binary expansion of n. 

Table I contains coefficients a, ofequation ( 5 1 )  for k ,  = 2  and k ,  = 3 for ten values of n. The next 
stage is to find the 'modified' coefficients A ,  from equation (50), i.e. A,  is the remainder of dividing 
k , a i  by k ,  ( A i < k , ) .  The simplest case is k , =  I ;  then A i = a i V i  (for all i). Table II(a) shows the 
coeficients A i  for ten values of n when k ,  = 3  and k , = 2 .  Having found Ai for i = O ,  . . . , m, the 
actual members 0, of the sequence are computed from equation (49). Table II(b) shows the first ten 
members of two Van der Corput sequences. 

The final stage to implement the RCM is the sampling procedure. Figure 3 shows that the 
updated value U:' depends on sampling the exact solution of the Riemann problems RP(i- 1, i) 
and RP(i, i +  1). Note that for each cell i we only solve one Riemann problem, except for i =  1. 
Given the CFL condition (47), we sample the right half of the solution of RP(i - 1, i) if0<0,< f or 
the left half of the solution of RP(i, i + 1 )  if d 0, < 1. The sampling procedure itself, irrespective of 
the value of On, has two main cases to consider, namely (A) the sampling point Qi lies to the left of 

Table 1. Coefficients a, and value of rn when k ,  = 2  and k ,  = 3  for 
n = I  10 

k ,  = 2  k ,  - 3  

n u ,  t i 2  a, rn Uo a ,  a2 In 

1 1 0 1 0 
2 0 1  2 2 1 
3 1 1  2 0 1  2 
4 0 0 1  3 1 1  2 
5 1 0 1  3 2 1  2 
6 0 1 1  3 0 2  2 
7 1 1 1  3 1 2  2 
8 0 0 0 1  4 2 2  2 
9 1 0 0 1  4 0 0 1 3  

10 0 1 0 1  4 1 0 1 3  

Table 11. (a) Coefficients A,  for sequence (3, 2) and 
(b) Van der Corput numbers (2, 1 )  and (3, 2) for n =  1 --I0 

I 2 
2 1 
3 0 2  
4 2 2  
5 1 2  
6 0 1  
7 2 1  
8 I !  
9 0 0 2  

10 2 0 2  

0.0 
-0.25 

0.25 

0.125 

0.375 

0.0625 

-0.375 

-0.125 

-0.4375 

-0.1875 

0- I667 
-0.1667 
-0.2778 

0.3889 
0.0556 

0.2778 
-0.3889 

-0.0556 
- 0.4259 

0.2407 
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dx/dt = u* 

the contact discontinuity dx/dt = u* and (B) Qi lies to the right of the contact discontinuity. Each 
case has two possible wave configurations. Figures 4 and 5 show these configurations for cases A 
and B respectively. 

Consider case A, i.e. Qi is to the left of dx/dt = u*. The flow chart of Figure 6 shows the detailed 
sampling procedure. One proceeds to sample the wave pattern of Figure 4(a) if the left wave is a 
shock wave, i.e. p* > p L .  Otherwise the wave configuration of Figure 4(b) is sampled (left 
rarefaction). For the shock case there are two possible regions, namely behind the shock (region 
star left) or in front of the shock (left state). For the rarefaction case there are three possible 
regions. If Qi lies to the right of the tail of the rarefaction dx/dt = u* - 4, then we assign the 
solution corresponding to the region star left. If Qi lies to the left of the head of the rarefaction 
dx/dt = uL - cL, then the data state U, is assigned to the solution. Finally, if Qi lies inside the 
rarefaction fan, the non-linear equation (40) must be solved to find p; the pressure p is found 
from equation (39) and the velocity u is found from equation (37). 

Case B, where Qi lies to the right of the contact discontinuity, is entirely similar to case A just 
described; it is its mirror image (see Figure 5). 

A t 

( a )  (b )  

Figure 4. Wave configuration for case A where Qi is to the left of the contact: (a) W ,  is shock; (b) W, is rarefaction 

t 

dx/dt = u* dxldt = U* 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

* x  - 
( a )  

t 

dx/dt = ux+ c i  
I 

Figure 5. Wave configuration for case B where Qi is to the right of the contact: (a) W ,  is shock; (b) W ,  is rarefaction 
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_NO YES - - 

,, 

I"" 
I 

(inside fan) 
solve eq. (40) for p 
find p from eq. (39) 
find u from eq. (37) 

Figure 6. Sampling procedure for case A where Qi lies to the left of the contact discontinuity dx/dt=u* (see Figure 4) 

Table 111. Data for two shock-tube problems 

(a) Ideal case (b) non-ideal case 

b = 0.0 b=0001(m3 kg-I) 
y =  1.4 y =  1.3 
pL=l.O, pR=0.125 pL=lOO.O, pR=l.O(kgrn-j) 
UL = 0.0, U R  = 0.0 
p L =  1.0, p,=O.l 

uL = 0.0, 
pa= 1000, p,=O.l(MPa) 

uR = @O(m s- l )  

xo = 0.5 x0 = 0.4 

The application of the solution of the Riemann problem with covolume to the random choice 
method has been described. The resulting numerical technique to solve the one-dimensional 
unsteady Euler equations with general data and boundary conditions of practical interest can now 
be applied to a variety of problems in which covolume is important. Note that the present 
Riemann solver applies directly to the ideal-gas case (b = 0). Indeed, if covolume is not needed, then 
it is more efficient to exclude covolume in all equations. 
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In Reference 3 details of the ideal-gas algorithm are given, including FORTRAN programs for 
the Riemanh solver and its implementation in the random choice method. 

6. APPLICATIONS 

Here we apply the solution of the Riemann problem with constant covolume to two classes of 
problems. 

6.1. Shock-tube problems 

Shock-tube problems are special cases of a Riemann problem and can therefore be solved 
exactly by direct application of the present Riemann solver. Also, as gas dynamic problems they 
can be solved approximately by solving the Euler equations numerically. This is done here by use 
of the RCM, which in turn utilizes, locally, the exact solution of the Riemann problem. 

First, as a partial validation of the method, we solved the shock-tube problem with data as given 
in Table III(a). This is the ideal-gas case (b  =0) and has a similarity solution. Figure 7 shows the 
results. They are coincident, as they should be. The second shock-tube problem is defined by the 
data of Table III(b). This is a case with covolume. Figure 8 shows a comparison between the ideal 
case (b =0) and the non-ideal case (b  = m3 kg- '). 

Differences are relatively small. The ideal-gas case gives a stronger shock but a weaker contact 
continuity. Also, the rarefaction for the ideal case is slightly weaker, but overall variations in p, u 
and p inside the rarefaction fan are small. Variations in internal energy are appreciable. This has 
implications for ignition criteria. 

Figure 9 shows a comparison between the exact solution and the numerical solution (obtained 
by the RCM) of the covolume shock-tube problem. 

Figure 10 shows the solution (using the RCM) for the shock-tube problem specified by 
Table III(a), but with covolume b = 0.8. This problem was solved numerically by Einfeldt" 
using an approximate Riemann solver. Obviously the value of b here is unrealistically high but 
serves the purpose of validating the present solution. 

6.2. The Lagrange problem 

The Lagrange problem' is essentially a moving-piston problem. This was solved exactly by 
Love and Pidduck" using the covolume (constant) equation of state with b=0.001 m3 kg- I .  The 
problem is specified in Table IV. It consists of a long tube with a chamber region bounded at one 
end by a fixed boundary and with a movable piston of specified mass at the other end. Initial 
values are those simulating instantaneous combustion, but in a uniform state at time zero. 

Figure 1 I shows the numerical solution (full lines) and the exact solution (symbols) given by 
Love and Pidduck. The quantities are the piston travel, the piston velocity, the pressure at the 
fixed end of the chamber and the pressure at the base of the moving piston, all against time. The 
numerical solution was obtained by the random choice method using the exact solution of the 
Riemann problem with constant covolume locally. As observed in the figure, the agreement is 
excellent. 

7. CONCLUSIONS 

An efficient solver for computing the exact solution of the Riemann problem with the constant 
covolume equation of state has been presented. The pressure p* between the acoustic waves is 
found by solving a single (non-linear) algebraic equation. The velocity u* then follows directly. 
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Figure 7. Sod's shock-tube problem. Present exact solution (symbols) and similarity solution (full lines) 
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Figure 8. Shock-tube problems: exact solutions. Solution with covolume b=0401 (full lines) and ideal case b=C 
(broken lines) 
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Figure 1 1 .  Lagrange’s ballistics problem. Random choice solution for mesh M, = 160 (fun lines) and exact solution 
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Table IV. Parameters for the Lagrange problem 

T,, tube radius 
I, total length of tube 
I,, length of chamber 
po, initial pressure in chamber 
po, initial gas density in chamber 
u,,, initial gas velocity in chamber 
y, ratio of specific heats 
b, covolume 
mp, mass of piston 

~ ~ 

0.075 m 
7.698 m 
1.698 m 
621 MPa 
400 kgm-’ 
0.0ms-I  
1.2222 
0.001 m3 kg-’ 
12 kg 

Values inside rarefaction fans require an extra iterative procedure for another single algebraic 
equation in p. 

The solution is then incorporated into the random choice method, which is a numerical 
technique capable of solving the initial value problem with general initial data. 

The solution is validated by direct application to shock-tube problems. The resulting RCM 
technique is also validated by solving shock-tube problems and the Lagrange problem. 
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